I M.Tech - II Semester - Regular/Supplementary Examinations JULY - 2017

ADVANCED ROBOTICS (MACHINE DESIGN)

Duration: 3 hours
Max. Marks: 70
Answer any FIVE questions. All questions carry equal marks

1. a) Briefly enumerate a chronology of historic events in the development of robotics.
b) Sketch and explain various types of joints used in robots.
2. a) Given two points $a_{\text {oxyz }}(4,3,2)^{\mathrm{T}}$ and $\mathrm{b}_{\text {oxyz }}(6,2,4)^{\mathrm{T}}$ are the coordinates with respect to the reference coordinate system, determine the corresponding points $a_{u v w}$ and $b_{u v w}$ with respect to the rotated OUVW coordinate system, if it has been rotated 60° about the OZ axis.

7 M
b) A vector $P=3 \mathrm{i}-2 \mathrm{j}+5 \mathrm{k}$ is first rotated by 90° about x -axis, then by 90° about z -axis. Finally it is translated by $-3 \mathrm{i}+2 \mathrm{j}-5 \mathrm{k}$. Determine the new vector P.
3. Find the values of θ_{1} and θ_{2} of the $\mathrm{R}-\mathrm{R}$ planar manipulator, shown in figure, in order to reach the point E on the end effector given by $X_{E}=16 \mathrm{cms}$ and $\mathrm{Y}_{\mathrm{E}}=13 \mathrm{cms}$, using D-H
convention. Take $l_{1}=15 \mathrm{cms}$ and $l_{2}=10 \mathrm{cms}$.

4. a) Explain differential motions of a frame.
b) Compute the Jacobian matrix for a Planar RR manipulator. 7 M
5. Determine the dynamic model of a one-DOF, one-axis planar manipulator with one rotary joint (the inverted pendulum). Assume the link to be a thin cylinder (slender member) with length L and mass m acting at the centroid of the link. Obtain the solution using Lagrange-Euler formulation.

14 M
6. a) Explain the cubic polynomial trajectory for planning trajectory interpolation between two points in a work space.
b) A one-degree of freedom manipulator with rotary joint is to move from 113° to 210° in 7 seconds. Find the coefficients of the cubic polynomial to interpolate a smooth trajectory.
7. a) Explain the various characteristics of actuating systems. Discuss the stiffness and compliance in robotic manipulators.
b) With the aid of a sketch, state and explain the working principle of stepper motor. Briefly describe the advantages and disadvantages of using stepper motors as robot actuators.
8. a) Discuss the following characteristics in the light of robotic sensors: response, weight, accuracy, sensitivity, and linearity.
b) With the aid of sketch, write short notes on LVDT and potentiometer.

